TD 12: Nombres réels Corrigé

– Supremum et infimum (pratique) —

1 ** Lorsqu'elles existent, déterminer les bornes supérieures et inférieures des ensembles suivants :

$$A = \left\{ x(1-x) \mid x \in \mathbb{R} \right\} \qquad B = \left\{ e^{-\frac{1}{n}} \mid n \in \mathbb{N}^* \right\}$$

$$C = \left\{ 1 + \frac{(-1)^n}{n} \mid n \in \mathbb{N}^* \right\} \quad D = \left\{ \arctan(e^x) \mid x \in \mathbb{R} \right\}$$

$$E = \left\{ x \in \mathbb{R}_+ \mid x^2 < 2 \right\} \qquad F = \left\{ n^{(-1)^n} \mid n \in \mathbb{N}^* \right\}$$

2 Lorsqu'elles existent, déterminer les bornes supérieures et inférieures des ensembles suivants :

•
$$A = \left\{ \frac{1}{p-q} \mid p, q \in \mathbb{Z} \quad \text{ et } \quad p \neq q \right\}$$

•
$$B = \left\{ \frac{pq}{p^2 + q^2} \mid p, q \in \mathbb{N}^* \right\}$$

$$\bullet \ C = \left\{ \frac{p + \sqrt{q}}{\sqrt{p} + q} \mid p, q \in \mathbb{N}^* \right\}$$

•
$$D = \{ p^4 - 6p^2q + 9q^2 \mid p, q \in \mathbb{R} \}$$

- Supremum et infimum (théorique) -

 $3 \star \star$ Soit *A* une partie non vide de \mathbb{Z} qui est maiorée.

1) Montrer que A possède une borne supérieure, qu'on notera M.

On admet le théorème suivant :

Si une suite à valeurs dans \mathbb{Z} est convergente, alors elle est constante à partir d'un certain rang.

- 2) En déduire que A possède un maximum.
- 3) Pour tout $x \in \mathbb{R}$, on pose $B = \{k \in \mathbb{Z} \mid k \le x\}$. Justifier que B possède un maximum. Que vaut max(B)?

4 state Soit A une partie de \mathbb{R} majorée. On note $M = \sup A$. On suppose que $M \notin A$.

- 1) Justifier que A n'admet pas de maximum.
- 2) Montrer que pour tout $\delta > 0$, l'intervalle $[M \delta, M]$ contient une infinité d'éléments de A.

Supposons par l'absurde qu'il existe $\delta>0$ tel que l'intervalle $[M-\delta,M]$ contienne un nombre fini d'éléments de A. Ainsi, l'ensemble

$$B = A \cap [M - \delta, M]$$

ne possède qu'un nombre fini d'éléments. En particulier, B possède un maximum : on pose $N = \max(B)$. On a en particulier $N \in B$, donc $N \in A$. Or, puisque $M \notin A$, on en déduit que $N \neq M$. Ainsi, on a $M - \delta \leq N < M$. On va obtenir une contradiction en montrant que N majore A, ce qui est impossible car $M = \sup A$ est le plus petit des majorants. Soit $x \in A$.

- On suppose que $x < M \delta$. Dans ce cas, on a bien $x \le N$ car $M \delta \le N$.
- On suppose que $x \ge M \delta$. Comme M majore A, on a aussi $x \le M$, donc $x \in A \cap [M \delta, M]$, i.e. $x \in B$. Puisque $N = \max(B)$, on a donc $x \le N$.

Dans tous les cas, on a donc $x \le N$, donc N majore A. Contradiction. Ainsi, l'ensemble $[M - \delta, M]$ contient une infinité d'éléments de A.

5 $\star\star\star$ Soit $A,B\subset\mathbb{R}$ deux parties non vides bornées.

1) On définit l'ensemble

$$A + B := \{a + b \mid a \in A, b \in B\}$$

Montrer que A + B est majoré et que

$$\sup(A+B) = \sup A + \sup B$$

2) On définit l'ensemble

$$|A| := \{|a| \mid a \in A\}$$

Montrer que |A| est majoré et déterminer sup |A| en fonction des supremum et/ou infimum de A .

Ensembles usuels, densité

6 ★★ (Nombres rationnels)

Rappel: si x et y sont rationnels, alors x + y, x - y, xy et x/y (si y est non nul) sont aussi rationnels.

- 1) Soit $x, y \in \mathbb{Q}$ positifs tels que \sqrt{x} et \sqrt{y} sont irrationnels. Montrer que $\sqrt{x} + \sqrt{y}$ est irrationnel.
- 2) Montrer que les nombres $\sqrt{6} \sqrt{2} \sqrt{3}$ ainsi que $\sqrt{2} + \sqrt{3} + \sqrt{5}$ sont irrationnels.

On peut utiliser le résultat suivant : si n ne s'écrit pas comme le carré d'un entier, alors \sqrt{n} est irrationnel.

On pose $r=\sqrt{6}-\sqrt{2}-\sqrt{3}$. Supposons par l'absurde que r est rationnel. On a $\sqrt{2}+\sqrt{3}=\sqrt{6}-r$ donc

$$2+3+2\sqrt{6}=6-r^2-2r\sqrt{6}$$

d'où $(2+2r)\sqrt{6}=1-r^2$. On montre que $r\neq -1$ donc $\sqrt{6}\in\mathbb{Q}$. Contradiction.

- Pour tout réel x, et entier naturel n, on pose $r_n = \frac{\lfloor 10^n x \rfloor}{10^n}$.
 - 1) Montrer que $\lim_{n\to+\infty} r_n = x$.
 - 2) En déduire que \mathbb{D} est dense dans \mathbb{R} .
- **8** *** Montrer que les ensembles suivants sont denses dans \mathbb{R} :

$$X = \left\{ \sqrt[3]{r} \mid r \in \mathbb{Q} \right\}$$
 $Y = \left\{ \frac{a}{2^n} \mid a \in \mathbb{Z}, n \in \mathbb{N} \right\}$

9 *** (nécessite d'avoir fait maths expertes)

Soit $k \in \mathbb{N}^*$. L'objectif est de montrer que $\frac{1}{k} \in \mathbb{D}$ si et seulement si k peut s'écrire $2^p 5^q$ avec $p, q \in \mathbb{N}$.

- 1) Traiter le sens indirect.
- 2) Montrer que si k est un multiple de 3, alors $\frac{1}{k} \notin \mathbb{D}$.
- 3) Traiter le sens direct en raisonnant par contraposée.